
askhome Documentation
Release 0.1

Matěj Hlaváček

Jun 02, 2017

Contents

1 Features 3

2 Why a Smart Home Skill 5

3 User Guide 7
3.1 Quick Start . 7

3.1.1 Installation . 7
3.1.2 Defining Appliances . 7
3.1.3 Handling Requests . 8
3.1.4 Deployment . 10

3.2 Advanced Usage . 11
3.2.1 Reusing Appliance Details . 11
3.2.2 Smarthome Handlers . 11

4 API Documentation 13
4.1 API Reference . 13

4.1.1 Appliance class . 13
4.1.2 Smarthome class . 14
4.1.3 Requests . 15
4.1.4 Exceptions . 18
4.1.5 Utils . 20

Python Module Index 21

i

ii

askhome Documentation, Release 0.1

Askhome wraps the Smart Home Skill API for Amazon Echo and removes all that ugly boilerplate.

Basic skill in askhome looks like this:

from askhome import Smarthome, Appliance

class Star(Appliance):
@Appliance.action
def turn_on(self, request):

... # Let there be light

home = Smarthome()
home.add_appliance('star1', Star, name='Sun')

handler = home.lambda_handler

Contents 1

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/smart-home-skill-api-reference

askhome Documentation, Release 0.1

2 Contents

CHAPTER 1

Features

• Define what your smart devices can do with simple class interface

• Askhome then handles device discovery and routes Alexa requests to your methods

• Requests come in a nice preprocessed object and provide easy to use response methods

• If something goes wrong, just raise the appropriate exception

• You don’t have to touch the raw JSON requests at all!

3

askhome Documentation, Release 0.1

4 Chapter 1. Features

CHAPTER 2

Why a Smart Home Skill

Alexa Custom Skills are indeed much more flexible, but creating their intent schema can be a hassle. If you want to
simply control your devices, Smart Home Skills provide a robust voice interfaces and all you have to do is plug in
your control logic — well, that is with askhome.

5

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/overviews/understanding-custom-skills

askhome Documentation, Release 0.1

6 Chapter 2. Why a Smart Home Skill

CHAPTER 3

User Guide

Quick Start

In here you’ll find a fast introduction to askhome and show you how to get a simple Smart Home Skill up and running.

Installation

Install askhome with pip:

$ pip install askhome

If you are deploying to AWS Lambda by uploading zips, install askhome to your directory with:

$ pip install askhome -t /path/to/project-dir

More on deployment later.

Defining Appliances

When a Smart Home Skill is installed on Amazon Echo, Alexa first needs to discover all available appliances with
information about what actions they support. With askhome, you can define your device types by subclassing
Appliance. Methods marked with the @Appliance.action decorator will be discoverable and called when
the corresponding request comes in:

from askhome import Appliance

class Light(Appliance):
@Appliance.action
def turn_on(self, request):

pass # Your logic for switching a light on here

@Appliance.action

7

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/overviews/understanding-the-smart-home-skill-api

askhome Documentation, Release 0.1

def turn_off(self, request):
pass # Your logic for switching a light, you guessed it, off here

Now that we’ve defined a light appliance type, lets fill our smart home with some:

from askhome import Smarthome

home = Smarthome()
home.add_appliance('light1', Light, name='Kitchen Light',

description='Turn me on when cutting vegetables.')

home.add_appliance('light2', Light, name='Bedroom Light',
model='Very Bright Light 8000')

We’ve added two lights with some additional info. For all details you can set, check the Smarthome.
add_appliance method or the official DiscoverAppliancesResponse documentation.

All that’s left to do is expose a handler for our AWS Lambda instance (more on that in deployment):

lambda_handler = home.lambda_handler

And that’s it! We’ve got a fully functioning Smart Home Skill that controls our lights. It can be initialized with:

“Alexa, discover my devices.”

And then to control the lights:

“Alexa, turn on the kitchen light.”

Handling Requests

When the method wrapped with @Appliance.action gets called, it receives a Request object as argument. It
has some basic useful attributes such as payload or name, but what’s special about it is that for every action type a
specific Request subclass is passed. These subclasses have additional helpful attributes and a response method
which simplifies the response creation. For instance a set_target_temperature action receives a request that
can do this:

class Heater(Appliance):
@Appliance.action
def set_target_temperature(self, request):

print request.temperature
return request.response(request.temperature,

mode='HEAT',
previous_temperature=21.3,
previous_mode='AUTO')

If the action method doesn’t return anything (returns None), success is implied.

Actions Overview

Possible action methods and their corresponding Request types passed are:

• turn_on(Request)

• turn_off(Request)

• set_percentage(PercentageRequest)

8 Chapter 3. User Guide

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/smart-home-skill-api-reference#discoverappliancesresponse

askhome Documentation, Release 0.1

• increment_percentage(PercentageRequest)

• decrement_percentage(PercentageRequest)

• set_target_temperature(ChangeTemperatureRequest)

• increment_target_temperature(ChangeTemperatureRequest)

• decrement_target_temperature(ChangeTemperatureRequest)

• get_target_temperature(GetTargetTemperatureRequest)

• get_temperature_reading(TemperatureReadingRequest)

• set_lock_state(LockStateRequest)

• get_lock_state(LockStateRequest)

Here is a sample usage of all possible actions:

from askhome.requests import *

class UltimateAppliance(Appliance):

The action_for decorator can mark a method for multiple actions
@Appliance.action_for('turn_on', 'turn_off')
def turn_on_off(self, request):

type: (Request) -> Optional[dict]
pass # nothing special here

@Appliance.action_for('set_percentage', 'increment_percentage',
'decrement_percentage')

def control_percentage(self, request):
type: (PercentageRequest) -> Optional[dict]
print request.percentage
print request.delta_percentage

@Appliance.action_for('set_target_temperature',
'increment_target_temperature',
'decrement_target_temperature')

def control_temperature(self, request):
type: (ChangeTemperatureRequest) -> Optional[dict]
print request.temperature
print request.delta_temperature
return request.response(22.8,

mode='HEAT',
previous_temperature=21.3,
previous_mode='AUTO')

@Appliance.action
def get_target_temperature(self, request):

type: (GetTargetTemperatureRequest) -> Optional[dict]
return request.response(21.8,

cooling_temperature=20
heating_temperature=23,
mode='CUSTOM',
mode_name='mode name')

@Appliance.action
def get_temperature_reading(self, request):

type: (TemperatureReadingRequest) -> Optional[dict]
return request.response(21.8, timestamp=datetime.now())

3.1. Quick Start 9

askhome Documentation, Release 0.1

@Appliance.action_for('set_lock_state', 'get_lock_state')
def lock_state(self, request):

type: (LockStateRequest) -> Optional[dict]
return request.response('LOCKED')

For further information about these actions see the official documentation.

Error Responses

If the user asked an invalid request or something goes wrong during the action execution, the Smart Home API offers
plenty of possible error responses. To respond with an error, simply raise one of askhome’s exceptions, like this:

from askhome.exceptions import ValueOutOfRangeError

class Heater(Appliance):
@Appliance.action
def set_target_temperature(self, request):

if request.temperature not in range(15, 25):
raise ValueOutOfRangeError(15, 25)

All possible exceptions can be found here or at the official error messages documentation.

Deployment

Unlike the Custom Skills, Smart Home Skills have to be hosted on AWS Lambda instances. To create a skill and
deploy it to Lambda, follow the official tutorial. When it comes to uploading your code, you have to package your
libraries with it. You can do that with a local pip installation and then uploading a zip of your project with all its
dependencies included.

Deploying with Zappa

Zappa is an awesome tool to deploy WSGI apps to Lambda. Smart Home Skills are not using the WSGI interface, but
we can still use Zappa to automate our deployments. It also comes with advantages like precompiled python packages
(such as pyOpenSSL) which would otherwise have to be compiled on AWS machines.

To use it, first create a virtualenv for your project:

$ virtualenv .venv
$ source .venv/Scripts/activate

Then install the required packages:

$ pip install Zappa askhome

Create a zappa_settings.yml configuration file for Zappa:

dev:
s3_bucket: smart-home-skill-dev-deploy
lambda_handler: main.lambda_handler # name of your file and exposed handler
aws_region: us-east-1 # region has to match your Echo version
timeout_seconds: 10
memory_size: 128

10 Chapter 3. User Guide

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/smart-home-skill-api-reference#message-payload
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/smart-home-skill-api-reference#error-messages
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/steps-to-create-a-smart-home-skill
https://github.com/Miserlou/Zappa
http://docs.python-guide.org/en/latest/dev/virtualenvs/

askhome Documentation, Release 0.1

keep_warm: false
touch: false # keep Zappa from sending WSGI requests to your skill

Finally, let Zappa do its work:

$ zappa deploy

That should create a Lambda function, but you still need to manually add the trigger and link the function to your skill
as described in the official tutorial. After that your Echo should respond to your commands!

Next, you can go to the official Smart Home Skill API documentation for detailed request information or continue to
Advanced Usage.

Advanced Usage

This section covers some more advanced features of askhome.

Reusing Appliance Details

If you’re creating a Smart Home Skill for devices from one manufacturer, you probably don’t want to repeat yourself
when specifying the details when adding the device with Smarthome.add_appliance. You can set defaults to
either Appliance or all devices in the Smarthome like this:

class Door(Appliance):
class Details:

model = 'QualityDoor'
version = '2.0'

home = Smarthome(manufacturer='EvilCorp')
home.add_appliance('door1', Door, name='Front Door')
home.add_appliance('door2', Door, name='Back Door', version='1.0')

Resulting detail value is resolved in this order:

1. Smarthome.add_appliance keyword arguments

2. Appliance.Details inner class

3. Smarthome.__init__ keyword arguments

Smarthome Handlers

The simple skill described in Quick Start has a potential problem in that it needs to know all appliances user has on
every request. For example, if you keep the data in a remote database, it’s wasteful to query for every appliance when
switching one light on.

This problem can be solved by handling discovery and getting appliances for requests manually:

home = Smarthome()

@home.discover_handler
def discover(request):

3.2. Advanced Usage 11

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/steps-to-create-a-smart-home-skill
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/smart-home-skill-api-reference

askhome Documentation, Release 0.1

Query the database here for all available appliances
home.add_appliance('light1', Light, name='Kitchen Light',

additional_details={'type': 'Light'})
return request.response(home)

@home.get_appliance_handler
def get_appliance(request):

if request.appliance_details['type'] == 'Light':
return Light

Here we’ve used the additional_details field the Smart Home API offers. You can save custom data in there during
discovery and for every subsequent request you get that data back. This way, we query the database only once during
discovery.

User Data

Often you will still need to query for some information about the user that sent the request. For that, there is another
Smarthome decorator:

@home.prepare_handler
def prepare(request):

Query the database for ip address of the user
ip = '1.2.3.4'
request.custom_data = {'user_ip': ip}

The above prepare function gets called before every request is processed. We save our user data to Request.
custom_data attribute, which we can use in any of our action methods.

12 Chapter 3. User Guide

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/smart-home-skill-api-reference#payload-1

CHAPTER 4

API Documentation

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

API Reference

Appliance class

class askhome.Appliance(request=None)
Appliance subclasses are used to describe what actions devices support.

Methods of subclasses can be marked with decorators (like @Appliance.action) and are used to generate
the Alexa DiscoverApplianceResponse. Alexa control and query requests are then routed to the corresponding
decorated method.

Appliance subclass can also contain a Details inner class for instance defaults during discovery (see
Smarthome.add_appliance for possible attributes).

request
Request – Currently processed request.

id
str – Identifier of the appliance from the appliance.applianceId of request payload.

additional_details
dict – Information that was sent for the DiscoverAppliancesRequest. Some instance specific details can be
saved here.

__init__(request=None)
Appliance gets initialized just before its action methods are called. Put your logic for preparation before
handling the request here.

classmethod action(func)
Decorator for marking the method as an action sent for the DiscoverAppliancesRequest.

13

askhome Documentation, Release 0.1

The action name is generated from the camelCased method name (e.g. turn_on -> turnOn). The decorated
method should take request as an argument, specific subclass of Request is passed for each action.

Possible action methods and their corresponding Request types passed are:

• turn_on(askhome.requests.Request)

• turn_off(askhome.requests.Request)

• set_percentage(askhome.requests.PercentageRequest)

• increment_percentage(askhome.requests.PercentageRequest)

• decrement_percentage(askhome.requests.PercentageRequest)

• set_target_temperature(askhome.requests.ChangeTemperatureRequest)

• increment_target_temperature(askhome.requests.ChangeTemperatureRequest)

• decrement_target_temperature(askhome.requests.ChangeTemperatureRequest)

• get_target_temperature(askhome.requests.GetTargetTemperatureRequest)

• get_temperature_reading(askhome.requests.TemperatureReadingRequest)

• set_lock_state(askhome.requests.LockStateRequest)

• get_lock_state(askhome.requests.LockStateRequest)

classmethod action_for(*args)
Decorator similar to the action decorator, except it doesn’t generate the action name from the method
name. All action names that should lead to the decorated method are passed as arguments to the decorator.

actions
dict(str, function) – All actions the appliance supports and their corresponding (unbound) method refer-
ences. Action names are formatted for the DiscoverAppliancesRequest.

request_handlers
dict(str, function) – All requests the appliance supports (methods marked as actions) and their correspond-
ing (unbound) method references. For example action turn_on would be formatted as TurnOnRequest.

class Details
Inner class in Appliance subclasses provides default values so that they don’t have to be repeated in
Smarthome.add_appliance.

Smarthome class

class askhome.Smarthome(**details)
Holds information about all appliances and handles routing requests to appliance actions.

appliances
dict(str, (Appliance, dict)) – All registered appliances with details dict.

details
dict – Defaults for details of appliances during DiscoverAppliancesRequest.

__init__(**details)

Parameters details (dict) – Defaults for details of appliances during DiscoverAppliances-
Request. See add_appliance method for possible values.

add_appliance(appl_id, appl_class, name=None, description=None, additional_details=None,
model=None, version=None, manufacturer=None, reachable=None)

Register Appliance so it can be discovered and routed to.

14 Chapter 4. API Documentation

askhome Documentation, Release 0.1

The keyword arguments can be also defined in Smarthome.__init__ and Details inner class in
the appliance. Resulting value is resolved in order of priority: Smarthome.add_appliance kwargs
-> Appliance.Details -> Smarthome.__init__ kwargs

Parameters

• appl_id (str) – Unique identifier of the appliance, needs to be consistent across mul-
tiple discovery requests for the same device. Can contain any letter or number and the
following special characters: _ - = # ; : ? @ &. Cannot exceed 256 characters.

• appl_class (Appliance) – Appliance subclass with marked actions.

• name (str) – Friendly name used by the customer to identify the device. Cannot exceed
128 characters and should not contain special characters or punctuation.

• description (str) – Human-readable description of the device. This value cannot
exceed 128 characters. The description should contain a description of how the device is
connected. For example, “WiFi Thermostat connected via Wink”.

• additional_details (dict(str, str)) – Some instance specific details can be
saved here. This field is sent back every time a request on that appliance is made. Cannot
exceed 5000 bytes.

• model (str) – Device model name. Cannot exceed 128 characters.

• version (str) – Vendor-provided version of the device. Cannot exceed 128 characters.

• manufacturer (str) – Name of device manufacturer. Cannot exceed 128 characters.

• reachable (bool) – Indicate if device is currently reachable.

prepare_handler(func)
Decorator for a function that gets called before every request. Useful to modify the request processed, for
instance add data to Request.custom_data

discover_handler(func)
Decorator for a function that handles the DiscoverAppliancesRequest instead of the Smarthome. This
can be useful for situations where querying the list of all devices is too expensive to be done every request.
Should be used in conjunction with the get_appliance_handler decorator.

get_appliance_handler(func)
Decorator for a function that handles getting the Appliance subclass instead of the Smarthome.
Should be used in conjunction with the get_appliance_handler decorator.

healthcheck_handler(func)
Decorator for a function that handles HealthCheckRequest. Behaves the same as a regular action
method.

lambda_handler(data, context=None)
Main entry point for handling requests. Pass the AWS Lambda events here.

Requests

askhome.requests.create_request(data, context=None)
Create a specific Request subclass according to the request type.

Each Request subclass has specific properties to access request data more easily and differing response
arguments for direct response creation.

class askhome.requests.Request(data, context=None)
Base Request class for parsing Alexa request data.

4.1. API Reference 15

askhome Documentation, Release 0.1

data
dict – Raw event data from the lambda handler.

context
object – Context object from the lambda handler.

header
dict – Header of the Alexa request.

payload
dict – Payload of the Alexa request.

name
str – Request name from the name field in header.

access_token
str – OAuth token from the accessToken field in payload.

custom_data
Any – Attribute for saving custom data through Smarthome.prepare_handler

__init__(data, context=None)

appliance_id
str – Identifier of the appliance from the appliance.applianceId of request payload.

appliance_details
dict – Information that was sent for the DiscoverApplianceRequest in field appliance.
additionalApplianceDetails

response_header(name=None)
Generate response header with copied values from the request and correct name.

raw_response(payload=None, header=None)
Compose response from raw payload and header dicts

response(*args, **kwargs)
Return response with empty payload. Arguments and implementation of this method differ in each Request
subclass.

exception_response(exception)
Create response from exception instance.

class askhome.requests.DiscoverRequest(data, context=None)
Request class for Alexa DiscoverAppliancesRequest.

response(smarthome)
Generate DiscoverAppliancesResponse from appliances added to the passed Smarthome.

Details of each appliance are resolved in order of priority: Smarthome.add_appliance kwargs ->
Appliance.Details -> Smarthome.__init__ kwargs

class askhome.requests.PercentageRequest(data, context=None)
Request class for Alexa Increment/Decrement/SetPercentageRequest.

percentage

delta_percentage

class askhome.requests.ChangeTemperatureRequest(data, context=None)
Request class for Alexa Increment/Decrement/SetTargetTemperatureRequest.

temperature

delta_temperature

16 Chapter 4. API Documentation

askhome Documentation, Release 0.1

response(temperature, mode=None, previous_temperature=None, previous_mode=None)

Parameters

• temperature (float) – Target temperature set by the device, in degrees Celsius.

• mode (str) – Temperature mode of device. Can be ‘AUTO’, ‘COOL’ or ‘HEAT’.

• previous_temperature (float) – Previous target temperature in degrees Celsius.

• previous_mode (str) – Previous temperature mode.

class askhome.requests.GetTargetTemperatureRequest(data, context=None)
Request class for Alexa GetTargetTemperatureRequest.

response(temperature=None, cooling_temperature=None, heating_temperature=None,
mode=’AUTO’, mode_name=None, timestamp=None)

Parameters

• temperature (float) – Target temperature set by the device, in degrees Celsius.

• cooling_temperature (float) – Target temperature (setpoint) for cooling, in de-
grees Celsius, when a device has dual setpoints. Usually combined with heatingTarget-
Temperature.

• heating_temperature (float) – Target temperature (setpoint) for heating, in de-
grees Celsius, when a device has dual setpoints. Usually combined with coolingTarget-
Temperature.

• mode (str) – Temperature mode of device. Can be one of ‘AUTO’, ‘COOL’, ‘HEAT’,
‘ECO’, ‘OFF’, ‘CUSTOM’.

• mode_name (str) – Friendly name of the mode when it differs from the canonical name.
Required when mode is ‘CUSTOM’.

• timestamp (datetime|str) – Time when the information was last retrieved.

class askhome.requests.TemperatureReadingRequest(data, context=None)
Request class for Alexa GetTemperatureReadingRequest.

response(temperature, timestamp=None)

Parameters

• temperature (float) – Current temperature reading, in degrees Celsius.

• timestamp (datetime|str) – Time when the information was last retrieved.

class askhome.requests.LockStateRequest(data, context=None)
Request class for Alexa Get/SetLockStateRequest.

lock_state

response(lock_state, timestamp=None)

Parameters

• lock_state (str) – Can be ‘LOCKED’ or ‘UNLOCKED’ for GetLockStateRequest,
can be only ‘LOCKED’ for SetLockStateRequest (for security reasons).

• timestamp (datetime|str) – Time when the information was last retrieved.

class askhome.requests.HealthCheckRequest(data, context=None)
Request class for Alexa HealthCheckRequest.

response(healthy, description)

4.1. API Reference 17

askhome Documentation, Release 0.1

Exceptions

exception askhome.exceptions.AskhomeException(*args, **kwargs)
Base askhome exception from which all inherit.

These exceptions can be raised in Appliance actions or manually passed to Request.
exception_response to create an error response.

namespace = ‘Alexa.ConnectedHome.Control’

__init__(*args, **kwargs)

Parameters

• name (str) – Custom error name in header of generated response

• payload (dict) – Custom payload of generated response

exception askhome.exceptions.ValueOutOfRangeError(min_val, max_val, *args, **kwargs)
Amazon docs: Indicates a customer request would set a target value to a value out of its supported range. For
example, a customer asks, “Alexa, set the kitchen to 1000 degrees”.

__init__(min_val, max_val, *args, **kwargs)

exception askhome.exceptions.TargetOfflineError(*args, **kwargs)
Amazon docs: Indicates that the target device is not connected to the customer’s device cloud or is not on.

exception askhome.exceptions.NoSuchTargetError(*args, **kwargs)
Amazon docs: Indicates that the target device cannot be found, meaning it was never configured by the end-user.

exception askhome.exceptions.BridgeOfflineError(*args, **kwargs)
Amazon docs: Indicates the target device is connected to a home automation hub or bridge, which is powered
off.

exception askhome.exceptions.DriverInternalError(*args, **kwargs)
Amazon docs: Indicates a generic runtime error within the skill adapter. When possible, a more specific error
should be returned.

exception askhome.exceptions.DependentServiceUnavailableError(service_name, *args,
**kwargs)

Amazon docs: Indicates that a skill adapter dependency is unavailable and the skill adapter cannot complete the
request.

__init__(service_name, *args, **kwargs)

exception askhome.exceptions.TargetConnectivityUnstableError(*args, **kwargs)
Amazon docs: Indicates the cloud-connectivity for the target device is not stable and reliable.

exception askhome.exceptions.TargetBridgeConnectivityUnstableError(*args,
**kwargs)

Amazon docs: Indicates that cloud-connectivity for a home automation hub or bridge that connects the target
device is unstable and unreliable.

exception askhome.exceptions.TargetFirmwareOutdatedError(min_version, cur_version,
*args, **kwargs)

Amazon docs: Indicates that the target device has outdated firmware.

__init__(min_version, cur_version, *args, **kwargs)

exception askhome.exceptions.TargetBridgeFirmwareOutdatedError(min_version,
cur_version, *args,
**kwargs)

Amazon docs: Indicates that the home automation hub or bridge that connects the target device has outdated
firmware.

18 Chapter 4. API Documentation

askhome Documentation, Release 0.1

__init__(min_version, cur_version, *args, **kwargs)

exception askhome.exceptions.TargetHardwareMalfunctionError(*args, **kwargs)
Amazon docs: Indicates that the target device experienced a hardware malfunction.

exception askhome.exceptions.TargetBridgeHardwareMalfunctionError(*args,
**kwargs)

Amazon docs: Indicates that the home automation hub or bridge connecting the target device experienced a
hardware malfunction

exception askhome.exceptions.UnableToGetValueError(error_code, error_description=None,
*args, **kwargs)

Amazon docs: Indicates that an error occurred while trying to get the specified value on the target device. When
returning this error, an appropriate error_code value enables Alexa to respond appropriately for different kinds
of failures. You only need to generate an error code appropriate for the target device.

namespace = ‘Alexa.ConnectedHome.Query’

__init__(error_code, error_description=None, *args, **kwargs)

Parameters

• error_code (str) – Possible error codes are:

– DEVICE_AJAR: Cannot get the specified state because the door is open.

– DEVICE_BUSY: The device is busy

– DEVICE_JAMMED: The device is jammed.

– DEVICE_OVERHEATED: The device has overheated.

– HARDWARE_FAILURE: Request failed because of an undetermined hardware failure.

– LOW_BATTERY: The device’s battery is low

– NOT_CALIBRATED: The device is not calibrated.

• error_description (str) – non-required custom description

exception askhome.exceptions.UnableToSetValueError(error_code, error_description=None,
*args, **kwargs)

Amazon docs: Indicates that an error occurred while trying to set the specified value on the target device. When
returning this error, an appropriate error_code value enables Alexa to respond appropriately for different kinds
of failures. You only need to generate error codes appropriate for the target device.

__init__(error_code, error_description=None, *args, **kwargs)

Parameters

• error_code (str) – Possible error codes are:

– DEVICE_AJAR: Cannot get the specified state because the door is open.

– DEVICE_BUSY: The device is busy

– DEVICE_JAMMED: The device is jammed.

– DEVICE_OVERHEATED: The device has overheated.

– HARDWARE_FAILURE: Request failed because of an undetermined hardware failure.

– LOW_BATTERY: The device’s battery is low

– NOT_CALIBRATED: The device is not calibrated.

• error_description (str) – non-required custom description

4.1. API Reference 19

askhome Documentation, Release 0.1

exception askhome.exceptions.UnwillingToSetValueError(error_code=’ThermostatIsOff’,
error_description=None, *args,
**kwargs)

Amazon docs: Indicates that the target device partner is unwilling to set the requested value on the specified
device. Use this error for temperature settings.

__init__(error_code=’ThermostatIsOff’, error_description=None, *args, **kwargs)

exception askhome.exceptions.RateLimitExceededError(rate_limit, time_unit=’HOUR’,
*args, **kwargs)

Amazon docs: Indicates that the maximum number of requests that a device accepts has been exceeded. This
message provides information about the maximum number of requests for a device and the time unit for those
requests. For example, if a device accepts four requests per hour, the message should specify 4 and HOUR as
rate_limit and time_unit, respectively.

__init__(rate_limit, time_unit=’HOUR’, *args, **kwargs)

exception askhome.exceptions.NotSupportedInCurrentModeError(current_mode, *args,
**kwargs)

Amazon docs: Indicates that the target device is in a mode in which it cannot be controlled with the Smart Home
Skill API, and provides information about the current mode of the device.

__init__(current_mode, *args, **kwargs)

exception askhome.exceptions.ExpiredAccessTokenError(*args, **kwargs)
Amazon docs: Indicates that the access token used for authentication has expired and is no longer valid.

exception askhome.exceptions.InvalidAccessTokenError(*args, **kwargs)
Amazon docs: Indicates that the access token used for authentication is not valid for a reason other than it has
expired.

exception askhome.exceptions.UnsupportedTargetError(*args, **kwargs)
Amazon docs: Indicates that the target device is not supported by the skill adapter.

exception askhome.exceptions.UnsupportedOperationError(*args, **kwargs)
Amazon docs: Indicates that the requested operation is not supported on the target device.

exception askhome.exceptions.UnsupportedTargetSettingError(*args, **kwargs)
Amazon docs: Indicates that the requested setting is not valid for the specified device and operation.

exception askhome.exceptions.UnexpectedInformationReceivedError(faulting_parameter,
*args, **kwargs)

Amazon docs: The request message or payload could not be handled by the skill adapter because it was mal-
formed.

__init__(faulting_parameter, *args, **kwargs)

Utils

askhome.utils.get_action_string(func_name)
Transform function name to Alexa action

askhome.utils.get_request_string(func_name)
Transform function name to Alexa request name

askhome.utils.rstrip_word(text, suffix)
Strip suffix from end of text

20 Chapter 4. API Documentation

Python Module Index

a
askhome.exceptions, 18
askhome.requests, 15
askhome.utils, 20

21

askhome Documentation, Release 0.1

22 Python Module Index

Index

Symbols
__init__() (askhome.Appliance method), 13
__init__() (askhome.Smarthome method), 14
__init__() (askhome.exceptions.AskhomeException

method), 18
__init__() (askhome.exceptions.DependentServiceUnavailableError

method), 18
__init__() (askhome.exceptions.NotSupportedInCurrentModeError

method), 20
__init__() (askhome.exceptions.RateLimitExceededError

method), 20
__init__() (askhome.exceptions.TargetBridgeFirmwareOutdatedError

method), 18
__init__() (askhome.exceptions.TargetFirmwareOutdatedError

method), 18
__init__() (askhome.exceptions.UnableToGetValueError

method), 19
__init__() (askhome.exceptions.UnableToSetValueError

method), 19
__init__() (askhome.exceptions.UnexpectedInformationReceivedError

method), 20
__init__() (askhome.exceptions.UnwillingToSetValueError

method), 20
__init__() (askhome.exceptions.ValueOutOfRangeError

method), 18
__init__() (askhome.requests.Request method), 16

A
access_token (askhome.requests.Request attribute), 16
action() (askhome.Appliance class method), 13
action_for() (askhome.Appliance class method), 14
actions (askhome.Appliance attribute), 14
add_appliance() (askhome.Smarthome method), 14
additional_details (Appliance attribute), 13
Appliance (class in askhome), 13
Appliance.Details (class in askhome), 14
appliance_details (askhome.requests.Request attribute),

16
appliance_id (askhome.requests.Request attribute), 16

appliances (Smarthome attribute), 14
askhome.exceptions (module), 18
askhome.requests (module), 15
askhome.utils (module), 20
AskhomeException, 18

B
BridgeOfflineError, 18

C
ChangeTemperatureRequest (class in askhome.requests),

16
context (askhome.requests.Request attribute), 16
create_request() (in module askhome.requests), 15
custom_data (askhome.requests.Request attribute), 16

D
data (askhome.requests.Request attribute), 15
delta_percentage (askhome.requests.PercentageRequest

attribute), 16
delta_temperature (askhome.requests.ChangeTemperatureRequest

attribute), 16
DependentServiceUnavailableError, 18
details (Smarthome attribute), 14
discover_handler() (askhome.Smarthome method), 15
DiscoverRequest (class in askhome.requests), 16
DriverInternalError, 18

E
exception_response() (askhome.requests.Request

method), 16
ExpiredAccessTokenError, 20

G
get_action_string() (in module askhome.utils), 20
get_appliance_handler() (askhome.Smarthome method),

15
get_request_string() (in module askhome.utils), 20

23

askhome Documentation, Release 0.1

GetTargetTemperatureRequest (class in
askhome.requests), 17

H
header (askhome.requests.Request attribute), 16
healthcheck_handler() (askhome.Smarthome method), 15
HealthCheckRequest (class in askhome.requests), 17

I
id (Appliance attribute), 13
InvalidAccessTokenError, 20

L
lambda_handler() (askhome.Smarthome method), 15
lock_state (askhome.requests.LockStateRequest at-

tribute), 17
LockStateRequest (class in askhome.requests), 17

N
name (askhome.requests.Request attribute), 16
namespace (askhome.exceptions.AskhomeException at-

tribute), 18
namespace (askhome.exceptions.UnableToGetValueError

attribute), 19
NoSuchTargetError, 18
NotSupportedInCurrentModeError, 20

P
payload (askhome.requests.Request attribute), 16
percentage (askhome.requests.PercentageRequest at-

tribute), 16
PercentageRequest (class in askhome.requests), 16
prepare_handler() (askhome.Smarthome method), 15

R
RateLimitExceededError, 20
raw_response() (askhome.requests.Request method), 16
request (Appliance attribute), 13
Request (class in askhome.requests), 15
request_handlers (askhome.Appliance attribute), 14
response() (askhome.requests.ChangeTemperatureRequest

method), 16
response() (askhome.requests.DiscoverRequest method),

16
response() (askhome.requests.GetTargetTemperatureRequest

method), 17
response() (askhome.requests.HealthCheckRequest

method), 17
response() (askhome.requests.LockStateRequest

method), 17
response() (askhome.requests.Request method), 16
response() (askhome.requests.TemperatureReadingRequest

method), 17

response_header() (askhome.requests.Request method),
16

rstrip_word() (in module askhome.utils), 20

S
Smarthome (class in askhome), 14

T
TargetBridgeConnectivityUnstableError, 18
TargetBridgeFirmwareOutdatedError, 18
TargetBridgeHardwareMalfunctionError, 19
TargetConnectivityUnstableError, 18
TargetFirmwareOutdatedError, 18
TargetHardwareMalfunctionError, 19
TargetOfflineError, 18
temperature (askhome.requests.ChangeTemperatureRequest

attribute), 16
TemperatureReadingRequest (class in askhome.requests),

17

U
UnableToGetValueError, 19
UnableToSetValueError, 19
UnexpectedInformationReceivedError, 20
UnsupportedOperationError, 20
UnsupportedTargetError, 20
UnsupportedTargetSettingError, 20
UnwillingToSetValueError, 19

V
ValueOutOfRangeError, 18

24 Index

	Features
	Why a Smart Home Skill
	User Guide
	Quick Start
	Installation
	Defining Appliances
	Handling Requests
	Deployment

	Advanced Usage
	Reusing Appliance Details
	Smarthome Handlers

	API Documentation
	API Reference
	Appliance class
	Smarthome class
	Requests
	Exceptions
	Utils

	Python Module Index

